longitudinal

Just use multilevel models for your pre/post RCT data

I’ve been thinking a lot about how to analyze pre/post control group designs, lately. Happily, others have thought a lot about this topic, too. The goal of this post is to introduce the change-score and ANCOVA models, introduce their multilevel-model counterparts, and compare their behavior in a couple quick simulation studies. Spoiler alert: The multilevel variant of the ANCOVA model is the winner.

One-step Bayesian imputation when you have dropout in your RCT

Say you have 2-timepoint RCT, where participants received either treatment or control. Even in the best of scenarios, you’ll probably have some dropout in those post-treatment data. To get the full benefit of your data, you can use one-step Bayesian imputation when you compute your effect sizes. In this post, I’ll show you how.

Effect sizes for experimental trials analyzed with multilevel growth models: Two of two

This post is the second of a two-part series. In the first post, we explored how one might compute an effect size for two-group experimental data with only 2 time points. In this second post, we fulfill our goal to show how to generalize this framework to experimental data collected over 3+ time points. The data and overall framework come from Feingold (2009).

Regression models for 2-timepoint non-experimental data

I recently came across Jeffrey Walker’s free text, Elements of statistical modeling for experimental biology, which contains a nice chapter on 2-timepoint experimental designs. Inspired by his work, this post aims to explore how one might analyze non-experimental 2-timepoint data within a regression model paradigm. Turns out you probably have more options than you realized.